3.3.4 \(\int \frac {A+C \cos ^2(c+d x)}{\cos ^{\frac {9}{2}}(c+d x) \sqrt {a+a \cos (c+d x)}} \, dx\) [204]

3.3.4.1 Optimal result
3.3.4.2 Mathematica [C] (warning: unable to verify)
3.3.4.3 Rubi [A] (verified)
3.3.4.4 Maple [A] (verified)
3.3.4.5 Fricas [A] (verification not implemented)
3.3.4.6 Sympy [F(-1)]
3.3.4.7 Maxima [C] (verification not implemented)
3.3.4.8 Giac [F]
3.3.4.9 Mupad [F(-1)]

3.3.4.1 Optimal result

Integrand size = 37, antiderivative size = 224 \[ \int \frac {A+C \cos ^2(c+d x)}{\cos ^{\frac {9}{2}}(c+d x) \sqrt {a+a \cos (c+d x)}} \, dx=\frac {\sqrt {2} (A+C) \arctan \left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {2} \sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)}}\right )}{\sqrt {a} d}+\frac {2 A \sin (c+d x)}{7 d \cos ^{\frac {7}{2}}(c+d x) \sqrt {a+a \cos (c+d x)}}-\frac {2 A \sin (c+d x)}{35 d \cos ^{\frac {5}{2}}(c+d x) \sqrt {a+a \cos (c+d x)}}+\frac {2 (31 A+35 C) \sin (c+d x)}{105 d \cos ^{\frac {3}{2}}(c+d x) \sqrt {a+a \cos (c+d x)}}-\frac {2 (43 A+35 C) \sin (c+d x)}{105 d \sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)}} \]

output
(A+C)*arctan(1/2*sin(d*x+c)*a^(1/2)*2^(1/2)/cos(d*x+c)^(1/2)/(a+a*cos(d*x+ 
c))^(1/2))*2^(1/2)/d/a^(1/2)+2/7*A*sin(d*x+c)/d/cos(d*x+c)^(7/2)/(a+a*cos( 
d*x+c))^(1/2)-2/35*A*sin(d*x+c)/d/cos(d*x+c)^(5/2)/(a+a*cos(d*x+c))^(1/2)+ 
2/105*(31*A+35*C)*sin(d*x+c)/d/cos(d*x+c)^(3/2)/(a+a*cos(d*x+c))^(1/2)-2/1 
05*(43*A+35*C)*sin(d*x+c)/d/cos(d*x+c)^(1/2)/(a+a*cos(d*x+c))^(1/2)
 
3.3.4.2 Mathematica [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 5 vs. order 3 in optimal.

Time = 9.51 (sec) , antiderivative size = 2510, normalized size of antiderivative = 11.21 \[ \int \frac {A+C \cos ^2(c+d x)}{\cos ^{\frac {9}{2}}(c+d x) \sqrt {a+a \cos (c+d x)}} \, dx=\text {Result too large to show} \]

input
Integrate[(A + C*Cos[c + d*x]^2)/(Cos[c + d*x]^(9/2)*Sqrt[a + a*Cos[c + d* 
x]]),x]
 
output
(-4*C*Cos[c/2 + (d*x)/2]*Sin[c/2 + (d*x)/2])/(7*d*Sqrt[a*(1 + Cos[c + d*x] 
)]*(1 - 2*Sin[c/2 + (d*x)/2]^2)^(7/2)) + (4*C*Cos[c/2 + (d*x)/2]*Sin[c/2 + 
 (d*x)/2])/(35*d*Sqrt[a*(1 + Cos[c + d*x])]*(1 - 2*Sin[c/2 + (d*x)/2]^2)^( 
5/2)) + (16*C*Cos[c/2 + (d*x)/2]*Sin[c/2 + (d*x)/2])/(105*d*Sqrt[a*(1 + Co 
s[c + d*x])]*(1 - 2*Sin[c/2 + (d*x)/2]^2)^(3/2)) + (32*C*Cos[c/2 + (d*x)/2 
]*Sin[c/2 + (d*x)/2])/(105*d*Sqrt[a*(1 + Cos[c + d*x])]*Sqrt[1 - 2*Sin[c/2 
 + (d*x)/2]^2]) + (2*(A + C)*Cot[c/2 + (d*x)/2]*Csc[c/2 + (d*x)/2]^8*(3638 
25*Sin[c/2 + (d*x)/2]^2 - 4729725*Sin[c/2 + (d*x)/2]^4 + 26785605*Sin[c/2 
+ (d*x)/2]^6 - 86790165*Sin[c/2 + (d*x)/2]^8 + 177677808*Sin[c/2 + (d*x)/2 
]^10 - 239283044*Sin[c/2 + (d*x)/2]^12 + 52080*Hypergeometric2F1[2, 11/2, 
13/2, Sin[c/2 + (d*x)/2]^2/(-1 + 2*Sin[c/2 + (d*x)/2]^2)]*Sin[c/2 + (d*x)/ 
2]^12 + 560*HypergeometricPFQ[{2, 2, 2, 2, 11/2}, {1, 1, 1, 13/2}, Sin[c/2 
 + (d*x)/2]^2/(-1 + 2*Sin[c/2 + (d*x)/2]^2)]*Sin[c/2 + (d*x)/2]^12 + 21312 
0160*Sin[c/2 + (d*x)/2]^14 - 168280*Hypergeometric2F1[2, 11/2, 13/2, Sin[c 
/2 + (d*x)/2]^2/(-1 + 2*Sin[c/2 + (d*x)/2]^2)]*Sin[c/2 + (d*x)/2]^14 - 224 
0*HypergeometricPFQ[{2, 2, 2, 2, 11/2}, {1, 1, 1, 13/2}, Sin[c/2 + (d*x)/2 
]^2/(-1 + 2*Sin[c/2 + (d*x)/2]^2)]*Sin[c/2 + (d*x)/2]^14 - 121497024*Sin[c 
/2 + (d*x)/2]^16 + 212520*Hypergeometric2F1[2, 11/2, 13/2, Sin[c/2 + (d*x) 
/2]^2/(-1 + 2*Sin[c/2 + (d*x)/2]^2)]*Sin[c/2 + (d*x)/2]^16 + 3360*Hypergeo 
metricPFQ[{2, 2, 2, 2, 11/2}, {1, 1, 1, 13/2}, Sin[c/2 + (d*x)/2]^2/(-1...
 
3.3.4.3 Rubi [A] (verified)

Time = 1.36 (sec) , antiderivative size = 254, normalized size of antiderivative = 1.13, number of steps used = 16, number of rules used = 15, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.405, Rules used = {3042, 3523, 27, 3042, 3463, 27, 3042, 3463, 27, 3042, 3463, 27, 3042, 3261, 218}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {A+C \cos ^2(c+d x)}{\cos ^{\frac {9}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {A+C \sin \left (c+d x+\frac {\pi }{2}\right )^2}{\sin \left (c+d x+\frac {\pi }{2}\right )^{9/2} \sqrt {a \sin \left (c+d x+\frac {\pi }{2}\right )+a}}dx\)

\(\Big \downarrow \) 3523

\(\displaystyle \frac {2 \int -\frac {a A-a (6 A+7 C) \cos (c+d x)}{2 \cos ^{\frac {7}{2}}(c+d x) \sqrt {\cos (c+d x) a+a}}dx}{7 a}+\frac {2 A \sin (c+d x)}{7 d \cos ^{\frac {7}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {2 A \sin (c+d x)}{7 d \cos ^{\frac {7}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}}-\frac {\int \frac {a A-a (6 A+7 C) \cos (c+d x)}{\cos ^{\frac {7}{2}}(c+d x) \sqrt {\cos (c+d x) a+a}}dx}{7 a}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {2 A \sin (c+d x)}{7 d \cos ^{\frac {7}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}}-\frac {\int \frac {a A-a (6 A+7 C) \sin \left (c+d x+\frac {\pi }{2}\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^{7/2} \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right ) a+a}}dx}{7 a}\)

\(\Big \downarrow \) 3463

\(\displaystyle \frac {2 A \sin (c+d x)}{7 d \cos ^{\frac {7}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}}-\frac {\frac {2 \int -\frac {a^2 (31 A+35 C)-4 a^2 A \cos (c+d x)}{2 \cos ^{\frac {5}{2}}(c+d x) \sqrt {\cos (c+d x) a+a}}dx}{5 a}+\frac {2 a A \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}}}{7 a}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {2 A \sin (c+d x)}{7 d \cos ^{\frac {7}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}}-\frac {\frac {2 a A \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}}-\frac {\int \frac {a^2 (31 A+35 C)-4 a^2 A \cos (c+d x)}{\cos ^{\frac {5}{2}}(c+d x) \sqrt {\cos (c+d x) a+a}}dx}{5 a}}{7 a}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {2 A \sin (c+d x)}{7 d \cos ^{\frac {7}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}}-\frac {\frac {2 a A \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}}-\frac {\int \frac {a^2 (31 A+35 C)-4 a^2 A \sin \left (c+d x+\frac {\pi }{2}\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^{5/2} \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right ) a+a}}dx}{5 a}}{7 a}\)

\(\Big \downarrow \) 3463

\(\displaystyle \frac {2 A \sin (c+d x)}{7 d \cos ^{\frac {7}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}}-\frac {\frac {2 a A \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}}-\frac {\frac {2 \int -\frac {a^3 (43 A+35 C)-2 a^3 (31 A+35 C) \cos (c+d x)}{2 \cos ^{\frac {3}{2}}(c+d x) \sqrt {\cos (c+d x) a+a}}dx}{3 a}+\frac {2 a^2 (31 A+35 C) \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}}}{5 a}}{7 a}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {2 A \sin (c+d x)}{7 d \cos ^{\frac {7}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}}-\frac {\frac {2 a A \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}}-\frac {\frac {2 a^2 (31 A+35 C) \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}}-\frac {\int \frac {a^3 (43 A+35 C)-2 a^3 (31 A+35 C) \cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {\cos (c+d x) a+a}}dx}{3 a}}{5 a}}{7 a}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {2 A \sin (c+d x)}{7 d \cos ^{\frac {7}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}}-\frac {\frac {2 a A \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}}-\frac {\frac {2 a^2 (31 A+35 C) \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}}-\frac {\int \frac {a^3 (43 A+35 C)-2 a^3 (31 A+35 C) \sin \left (c+d x+\frac {\pi }{2}\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2} \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right ) a+a}}dx}{3 a}}{5 a}}{7 a}\)

\(\Big \downarrow \) 3463

\(\displaystyle \frac {2 A \sin (c+d x)}{7 d \cos ^{\frac {7}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}}-\frac {\frac {2 a A \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}}-\frac {\frac {2 a^2 (31 A+35 C) \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}}-\frac {\frac {2 \int -\frac {105 a^4 (A+C)}{2 \sqrt {\cos (c+d x)} \sqrt {\cos (c+d x) a+a}}dx}{a}+\frac {2 a^3 (43 A+35 C) \sin (c+d x)}{d \sqrt {\cos (c+d x)} \sqrt {a \cos (c+d x)+a}}}{3 a}}{5 a}}{7 a}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {2 A \sin (c+d x)}{7 d \cos ^{\frac {7}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}}-\frac {\frac {2 a A \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}}-\frac {\frac {2 a^2 (31 A+35 C) \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}}-\frac {\frac {2 a^3 (43 A+35 C) \sin (c+d x)}{d \sqrt {\cos (c+d x)} \sqrt {a \cos (c+d x)+a}}-105 a^3 (A+C) \int \frac {1}{\sqrt {\cos (c+d x)} \sqrt {\cos (c+d x) a+a}}dx}{3 a}}{5 a}}{7 a}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {2 A \sin (c+d x)}{7 d \cos ^{\frac {7}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}}-\frac {\frac {2 a A \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}}-\frac {\frac {2 a^2 (31 A+35 C) \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}}-\frac {\frac {2 a^3 (43 A+35 C) \sin (c+d x)}{d \sqrt {\cos (c+d x)} \sqrt {a \cos (c+d x)+a}}-105 a^3 (A+C) \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right ) a+a}}dx}{3 a}}{5 a}}{7 a}\)

\(\Big \downarrow \) 3261

\(\displaystyle \frac {2 A \sin (c+d x)}{7 d \cos ^{\frac {7}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}}-\frac {\frac {2 a A \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}}-\frac {\frac {2 a^2 (31 A+35 C) \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}}-\frac {\frac {210 a^4 (A+C) \int \frac {1}{\frac {\sin (c+d x) \tan (c+d x) a^3}{\cos (c+d x) a+a}+2 a^2}d\left (-\frac {a \sin (c+d x)}{\sqrt {\cos (c+d x)} \sqrt {\cos (c+d x) a+a}}\right )}{d}+\frac {2 a^3 (43 A+35 C) \sin (c+d x)}{d \sqrt {\cos (c+d x)} \sqrt {a \cos (c+d x)+a}}}{3 a}}{5 a}}{7 a}\)

\(\Big \downarrow \) 218

\(\displaystyle \frac {2 A \sin (c+d x)}{7 d \cos ^{\frac {7}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}}-\frac {\frac {2 a A \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}}-\frac {\frac {2 a^2 (31 A+35 C) \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}}-\frac {\frac {2 a^3 (43 A+35 C) \sin (c+d x)}{d \sqrt {\cos (c+d x)} \sqrt {a \cos (c+d x)+a}}-\frac {105 \sqrt {2} a^{5/2} (A+C) \arctan \left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {2} \sqrt {\cos (c+d x)} \sqrt {a \cos (c+d x)+a}}\right )}{d}}{3 a}}{5 a}}{7 a}\)

input
Int[(A + C*Cos[c + d*x]^2)/(Cos[c + d*x]^(9/2)*Sqrt[a + a*Cos[c + d*x]]),x 
]
 
output
(2*A*Sin[c + d*x])/(7*d*Cos[c + d*x]^(7/2)*Sqrt[a + a*Cos[c + d*x]]) - ((2 
*a*A*Sin[c + d*x])/(5*d*Cos[c + d*x]^(5/2)*Sqrt[a + a*Cos[c + d*x]]) - ((2 
*a^2*(31*A + 35*C)*Sin[c + d*x])/(3*d*Cos[c + d*x]^(3/2)*Sqrt[a + a*Cos[c 
+ d*x]]) - ((-105*Sqrt[2]*a^(5/2)*(A + C)*ArcTan[(Sqrt[a]*Sin[c + d*x])/(S 
qrt[2]*Sqrt[Cos[c + d*x]]*Sqrt[a + a*Cos[c + d*x]])])/d + (2*a^3*(43*A + 3 
5*C)*Sin[c + d*x])/(d*Sqrt[Cos[c + d*x]]*Sqrt[a + a*Cos[c + d*x]]))/(3*a)) 
/(5*a))/(7*a)
 

3.3.4.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 218
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/R 
t[a/b, 2]], x] /; FreeQ[{a, b}, x] && PosQ[a/b]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3261
Int[1/(Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(c_.) + (d_.)*sin[(e 
_.) + (f_.)*(x_)]]), x_Symbol] :> Simp[-2*(a/f)   Subst[Int[1/(2*b^2 - (a*c 
 - b*d)*x^2), x], x, b*(Cos[e + f*x]/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*S 
in[e + f*x]]))], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && 
 EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]
 

rule 3463
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + 
(f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim 
p[(B*c - A*d)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*x])^(n 
+ 1)/(f*(n + 1)*(c^2 - d^2))), x] + Simp[1/(b*(n + 1)*(c^2 - d^2))   Int[(a 
 + b*Sin[e + f*x])^m*(c + d*Sin[e + f*x])^(n + 1)*Simp[A*(a*d*m + b*c*(n + 
1)) - B*(a*c*m + b*d*(n + 1)) + b*(B*c - A*d)*(m + n + 2)*Sin[e + f*x], x], 
 x], x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0] && Eq 
Q[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[n, -1] && (IntegerQ[n] || EqQ[m 
 + 1/2, 0])
 

rule 3523
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.) + 
 (f_.)*(x_)])^(n_)*((A_.) + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> 
Simp[(-(c^2*C + A*d^2))*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + 
 f*x])^(n + 1)/(d*f*(n + 1)*(c^2 - d^2))), x] + Simp[1/(b*d*(n + 1)*(c^2 - 
d^2))   Int[(a + b*Sin[e + f*x])^m*(c + d*Sin[e + f*x])^(n + 1)*Simp[A*d*(a 
*d*m + b*c*(n + 1)) + c*C*(a*c*m + b*d*(n + 1)) - b*(A*d^2*(m + n + 2) + C* 
(c^2*(m + 1) + d^2*(n + 1)))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, 
 e, f, A, C, m}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - 
d^2, 0] &&  !LtQ[m, -2^(-1)] && (LtQ[n, -1] || EqQ[m + n + 2, 0])
 
3.3.4.4 Maple [A] (verified)

Time = 11.01 (sec) , antiderivative size = 328, normalized size of antiderivative = 1.46

method result size
default \(-\frac {\left (105 A \sqrt {2}\, \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \arcsin \left (\cot \left (d x +c \right )-\csc \left (d x +c \right )\right ) \left (\cos ^{4}\left (d x +c \right )\right )+105 \sqrt {2}\, \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, C \left (\cos ^{4}\left (d x +c \right )\right ) \arcsin \left (\cot \left (d x +c \right )-\csc \left (d x +c \right )\right )+105 A \left (\cos ^{3}\left (d x +c \right )\right ) \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sqrt {2}\, \arcsin \left (\cot \left (d x +c \right )-\csc \left (d x +c \right )\right )+105 C \left (\cos ^{3}\left (d x +c \right )\right ) \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sqrt {2}\, \arcsin \left (\cot \left (d x +c \right )-\csc \left (d x +c \right )\right )+86 A \left (\cos ^{3}\left (d x +c \right )\right ) \sin \left (d x +c \right )+70 C \left (\cos ^{3}\left (d x +c \right )\right ) \sin \left (d x +c \right )-62 A \sin \left (d x +c \right ) \left (\cos ^{2}\left (d x +c \right )\right )-70 C \left (\cos ^{2}\left (d x +c \right )\right ) \sin \left (d x +c \right )+6 A \sin \left (d x +c \right ) \cos \left (d x +c \right )-30 A \sin \left (d x +c \right )\right ) \sqrt {a \left (1+\cos \left (d x +c \right )\right )}}{105 d a \left (1+\cos \left (d x +c \right )\right ) \cos \left (d x +c \right )^{\frac {7}{2}}}\) \(328\)
parts \(-\frac {A \left (105 \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \arcsin \left (\cot \left (d x +c \right )-\csc \left (d x +c \right )\right ) \left (\cos ^{4}\left (d x +c \right )\right )+105 \left (\cos ^{3}\left (d x +c \right )\right ) \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \arcsin \left (\cot \left (d x +c \right )-\csc \left (d x +c \right )\right )+43 \sqrt {2}\, \left (\cos ^{3}\left (d x +c \right )\right ) \sin \left (d x +c \right )-31 \sqrt {2}\, \left (\cos ^{2}\left (d x +c \right )\right ) \sin \left (d x +c \right )+3 \sin \left (d x +c \right ) \cos \left (d x +c \right ) \sqrt {2}-15 \sqrt {2}\, \sin \left (d x +c \right )\right ) \sqrt {a \left (1+\cos \left (d x +c \right )\right )}\, \sqrt {2}}{105 d \left (1+\cos \left (d x +c \right )\right ) \cos \left (d x +c \right )^{\frac {7}{2}} a}-\frac {C \left (3 \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \left (\cos ^{2}\left (d x +c \right )\right ) \arcsin \left (\cot \left (d x +c \right )-\csc \left (d x +c \right )\right )+\sin \left (d x +c \right ) \cos \left (d x +c \right ) \sqrt {2}+3 \cos \left (d x +c \right ) \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \arcsin \left (\cot \left (d x +c \right )-\csc \left (d x +c \right )\right )-\sqrt {2}\, \sin \left (d x +c \right )\right ) \sqrt {a \left (1+\cos \left (d x +c \right )\right )}\, \sqrt {2}}{3 d \left (1+\cos \left (d x +c \right )\right ) \cos \left (d x +c \right )^{\frac {3}{2}} a}\) \(359\)

input
int((A+C*cos(d*x+c)^2)/cos(d*x+c)^(9/2)/(a+cos(d*x+c)*a)^(1/2),x,method=_R 
ETURNVERBOSE)
 
output
-1/105/d*(105*A*2^(1/2)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*arcsin(cot(d*x+c 
)-csc(d*x+c))*cos(d*x+c)^4+105*2^(1/2)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*C 
*cos(d*x+c)^4*arcsin(cot(d*x+c)-csc(d*x+c))+105*A*cos(d*x+c)^3*(cos(d*x+c) 
/(1+cos(d*x+c)))^(1/2)*2^(1/2)*arcsin(cot(d*x+c)-csc(d*x+c))+105*C*cos(d*x 
+c)^3*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*2^(1/2)*arcsin(cot(d*x+c)-csc(d*x+ 
c))+86*A*cos(d*x+c)^3*sin(d*x+c)+70*C*cos(d*x+c)^3*sin(d*x+c)-62*A*sin(d*x 
+c)*cos(d*x+c)^2-70*C*cos(d*x+c)^2*sin(d*x+c)+6*A*sin(d*x+c)*cos(d*x+c)-30 
*A*sin(d*x+c))*(a*(1+cos(d*x+c)))^(1/2)/a/(1+cos(d*x+c))/cos(d*x+c)^(7/2)
 
3.3.4.5 Fricas [A] (verification not implemented)

Time = 0.30 (sec) , antiderivative size = 189, normalized size of antiderivative = 0.84 \[ \int \frac {A+C \cos ^2(c+d x)}{\cos ^{\frac {9}{2}}(c+d x) \sqrt {a+a \cos (c+d x)}} \, dx=-\frac {2 \, {\left ({\left (43 \, A + 35 \, C\right )} \cos \left (d x + c\right )^{3} - {\left (31 \, A + 35 \, C\right )} \cos \left (d x + c\right )^{2} + 3 \, A \cos \left (d x + c\right ) - 15 \, A\right )} \sqrt {a \cos \left (d x + c\right ) + a} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) - \frac {105 \, \sqrt {2} {\left ({\left (A + C\right )} a \cos \left (d x + c\right )^{5} + {\left (A + C\right )} a \cos \left (d x + c\right )^{4}\right )} \arctan \left (\frac {\sqrt {2} \sqrt {a \cos \left (d x + c\right ) + a} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{2 \, {\left (\cos \left (d x + c\right )^{2} + \cos \left (d x + c\right )\right )} \sqrt {a}}\right )}{\sqrt {a}}}{105 \, {\left (a d \cos \left (d x + c\right )^{5} + a d \cos \left (d x + c\right )^{4}\right )}} \]

input
integrate((A+C*cos(d*x+c)^2)/cos(d*x+c)^(9/2)/(a+a*cos(d*x+c))^(1/2),x, al 
gorithm="fricas")
 
output
-1/105*(2*((43*A + 35*C)*cos(d*x + c)^3 - (31*A + 35*C)*cos(d*x + c)^2 + 3 
*A*cos(d*x + c) - 15*A)*sqrt(a*cos(d*x + c) + a)*sqrt(cos(d*x + c))*sin(d* 
x + c) - 105*sqrt(2)*((A + C)*a*cos(d*x + c)^5 + (A + C)*a*cos(d*x + c)^4) 
*arctan(1/2*sqrt(2)*sqrt(a*cos(d*x + c) + a)*sqrt(cos(d*x + c))*sin(d*x + 
c)/((cos(d*x + c)^2 + cos(d*x + c))*sqrt(a)))/sqrt(a))/(a*d*cos(d*x + c)^5 
 + a*d*cos(d*x + c)^4)
 
3.3.4.6 Sympy [F(-1)]

Timed out. \[ \int \frac {A+C \cos ^2(c+d x)}{\cos ^{\frac {9}{2}}(c+d x) \sqrt {a+a \cos (c+d x)}} \, dx=\text {Timed out} \]

input
integrate((A+C*cos(d*x+c)**2)/cos(d*x+c)**(9/2)/(a+a*cos(d*x+c))**(1/2),x)
 
output
Timed out
 
3.3.4.7 Maxima [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 1.00 (sec) , antiderivative size = 2199, normalized size of antiderivative = 9.82 \[ \int \frac {A+C \cos ^2(c+d x)}{\cos ^{\frac {9}{2}}(c+d x) \sqrt {a+a \cos (c+d x)}} \, dx=\text {Too large to display} \]

input
integrate((A+C*cos(d*x+c)^2)/cos(d*x+c)^(9/2)/(a+a*cos(d*x+c))^(1/2),x, al 
gorithm="maxima")
 
output
1/105*((105*(sqrt(2)*cos(2*d*x + 2*c)^4 + sqrt(2)*sin(2*d*x + 2*c)^4 + 4*s 
qrt(2)*cos(2*d*x + 2*c)^3 + 2*(sqrt(2)*cos(2*d*x + 2*c)^2 + 2*sqrt(2)*cos( 
2*d*x + 2*c) + sqrt(2))*sin(2*d*x + 2*c)^2 + 6*sqrt(2)*cos(2*d*x + 2*c)^2 
+ 4*sqrt(2)*cos(2*d*x + 2*c) + sqrt(2))*sqrt(a)*arctan2(((abs(e^(I*d*x + I 
*c) + 1)^4 + cos(d*x + c)^4 + sin(d*x + c)^4 + 2*(cos(d*x + c)^2 - sin(d*x 
 + c)^2 - 2*cos(d*x + c) + 1)*abs(e^(I*d*x + I*c) + 1)^2 - 4*cos(d*x + c)^ 
3 + 2*(cos(d*x + c)^2 - 2*cos(d*x + c) + 1)*sin(d*x + c)^2 + 6*cos(d*x + c 
)^2 - 4*cos(d*x + c) + 1)^(1/4)*sin(1/2*arctan2(2*(cos(d*x + c) - 1)*sin(d 
*x + c)/abs(e^(I*d*x + I*c) + 1)^2, (abs(e^(I*d*x + I*c) + 1)^2 + cos(d*x 
+ c)^2 - sin(d*x + c)^2 - 2*cos(d*x + c) + 1)/abs(e^(I*d*x + I*c) + 1)^2)) 
 + sin(d*x + c))/abs(e^(I*d*x + I*c) + 1), ((abs(e^(I*d*x + I*c) + 1)^4 + 
cos(d*x + c)^4 + sin(d*x + c)^4 + 2*(cos(d*x + c)^2 - sin(d*x + c)^2 - 2*c 
os(d*x + c) + 1)*abs(e^(I*d*x + I*c) + 1)^2 - 4*cos(d*x + c)^3 + 2*(cos(d* 
x + c)^2 - 2*cos(d*x + c) + 1)*sin(d*x + c)^2 + 6*cos(d*x + c)^2 - 4*cos(d 
*x + c) + 1)^(1/4)*sqrt(a)*cos(1/2*arctan2(2*(cos(d*x + c) - 1)*sin(d*x + 
c)/abs(e^(I*d*x + I*c) + 1)^2, (abs(e^(I*d*x + I*c) + 1)^2 + cos(d*x + c)^ 
2 - sin(d*x + c)^2 - 2*cos(d*x + c) + 1)/abs(e^(I*d*x + I*c) + 1)^2)) + sq 
rt(a)*cos(d*x + c) - sqrt(a))/(sqrt(a)*abs(e^(I*d*x + I*c) + 1))) - 2*(cos 
(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(3/4)*(43*( 
cos(2*d*x + 2*c)^2*sin(d*x + c) + sin(2*d*x + 2*c)^2*sin(d*x + c) + 2*c...
 
3.3.4.8 Giac [F]

\[ \int \frac {A+C \cos ^2(c+d x)}{\cos ^{\frac {9}{2}}(c+d x) \sqrt {a+a \cos (c+d x)}} \, dx=\int { \frac {C \cos \left (d x + c\right )^{2} + A}{\sqrt {a \cos \left (d x + c\right ) + a} \cos \left (d x + c\right )^{\frac {9}{2}}} \,d x } \]

input
integrate((A+C*cos(d*x+c)^2)/cos(d*x+c)^(9/2)/(a+a*cos(d*x+c))^(1/2),x, al 
gorithm="giac")
 
output
integrate((C*cos(d*x + c)^2 + A)/(sqrt(a*cos(d*x + c) + a)*cos(d*x + c)^(9 
/2)), x)
 
3.3.4.9 Mupad [F(-1)]

Timed out. \[ \int \frac {A+C \cos ^2(c+d x)}{\cos ^{\frac {9}{2}}(c+d x) \sqrt {a+a \cos (c+d x)}} \, dx=\int \frac {C\,{\cos \left (c+d\,x\right )}^2+A}{{\cos \left (c+d\,x\right )}^{9/2}\,\sqrt {a+a\,\cos \left (c+d\,x\right )}} \,d x \]

input
int((A + C*cos(c + d*x)^2)/(cos(c + d*x)^(9/2)*(a + a*cos(c + d*x))^(1/2)) 
,x)
 
output
int((A + C*cos(c + d*x)^2)/(cos(c + d*x)^(9/2)*(a + a*cos(c + d*x))^(1/2)) 
, x)